

Pipe supports Finding the type and settings in Rohr2 for supports from

Lisega & SSG-standard

Table of contents

Contents

1.	Disclaimer
2.	Trademarks
3.	Figures used in this document3
4.	Lisega rigid link4
5.	Spring hanger, Lisega and SSG type 45
6.	Spring Support, Lisega6
7.	Constant hanger, Lisega7
8.	Constant Support, Lisega8
9.	Lisega Shock absorber9
10.	Lisega Damper10
11.	Lisega Visco Damper11
12.	Lisega Rod support, SSG type 1, 2 & 312
13.	Lisega Sliding shoe, SSG type 1114
14.	Lisega Sliding shoe, SSG type 12 &1315
15.	Lisega Sliding shoe w. guide, SSG type 14 & 1516
16.	Lisega roller bearing support17
17.	Lateral support & spring, SSG type 17 & 1818
18.	Lisega spring support vert. pipe, SSG type 27 - 3019
19.	Pipe – beam connection, SSG type 3120
20.	Trunnion support, SSG type 3221
21.	Axial flex plate support, SSG type 33 & 3422
22.	Lisega anchor support, SSG type 35 & 3623
23.	Stiffness values for supports24

1. Disclaimer

The objective of this document is to provide guidelines on how to model various supports, including information on settings in Rohr2.

The user of the ROHR2 piping software is responsible for model setup, selection of pipe supports and to check the validity of calculated results.

The information in this document may be obsolete or change at any time without notice and it is up to the user of the Rohr2 piping software to carefully read the update notes included with each program update or revision.

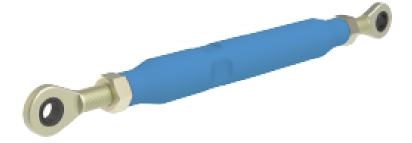
2. Trademarks

Lisega is the trademark of Lisega SE, Gerhard-Liesegang-Straße 1, 27404 Zeven, Germany (www.lisega.de)

SSG is the trademark of the SSG Standard Solutions Group, Skönsbergsvägen 3, 856 41 Sundsvall, Sweden (www.ssgsolutions.com)

Rörklammerfabriken is a manufacturer of pipe supports following the SSG standard.

Address:


Rörklammerfabriken AB, Box 31, 241 21 Eslöv, Sweden, www.rorklammerfabriken.se

3. Figures used in this document

Pictures showing Lisega components are taken from the Lisega product catalogue and are shown with courtesy of Lisega SE.

Pictures showing SSG components are taken from the webpage of Rörklammerfabriken AB with courtesy of SSG Standard Solutions Group and Rörklammerfabriken AB.

4. Lisega rigid link

Rigid hanger

- Is working in vertical direction only
- Carries load in both tension and compression
- "internal hanger option" allows for connection to other existing beam- or pipe structures in the analysis model
- Axial stiffness may be given
- Bending moments and torques are <u>not</u> restrained.
 1. PX, PY and PZ= free
- Length must be entered if angular deviation is wanted
 - 1. The maximum angulation of the support rod from the vertical shall be 4° (according to EN 13480)
- Mass of component may be input
- Allowable load may be input

Angulating support, Rigid support

- Is working in any direction
 - Specify "special coordinate system" when the support is not aligned with the global Cartesian coordinate system
- Carries load in both tension and compression
- "internal support option" allows connection to other existing beam or pipe structures in analysis model
- Axial stiffness may be given
- Bending moments and torques are <u>not</u> restrained.
 PX, PY and PZ= free
- Length must be entered if angular deviation is wanted.
- Mass of component may be input
- Allowable load may be input

Node 73		×
Rigid hanger		
Segment 1 - 73	✓ Deactivate	
 external f 	hanger Ointernal hanger	
Consider angular devi	iation Length mm	
Stiffness		
Edit stiffness	Default	
Add. support mass 0	kg	
Allowable load	kN	
Description		
insert multiple		
OK	Cancel Apply Help	


Node 73	×
Angulating support	
Segment 73 - 47 Block Deactivate	
external support O internal support Type Rigid support O Spring support O Constant support	
Coordinate system Edit coordinate system	
Support direction O + O X O Y Z Length 0 mm O - Existing 0	
Spring design	
Consider with automatic design	
Design Spring rate (res.) 1e+20 N/mm	
Installation load (res.) 0 kN	
Spring curve Consider curve Select curve	
Stiffness of rigid supports Edit stiffness Default	
Add. support mass 0 kg	
Allowable load kN	
Spring type	
Description	
insert multiple	
OK Cancel Apply Help	

5. Spring hanger, Lisega and SSG type 4

Lisega spring hanger

Spring hanger SSG type 4

Rohr2 menus:

Spring hanger

- Is working in vertical direction only
- "Internal hanger" option allows connection to other existing beam or pipe structures in model
- Bending moments and torques are <u>not</u> restrained
 - 1. PX, PY and PZ= free
- Automatic design according to spring manufacturer design rules is default.
 - 1. Data from existing hangers may be specified
- Length must be entered if angular deviation is wanted.
 - The maximum angulation of the hanger from the vertical shall be 4° (according to EN 13480)
- Friction is only considered in nonlinear analysis
- Mass of component may be input
- Design allows for:
 - 1. selection of different brand of hanger.
 - 2. User defined installation load
 - 3. User may select hanger type from catalogue

Node 73	×
Spring hanger	
Segment 73 - 47 Block Deac	tivate
Spring design	
Consider with automatic design]
Design Spring rate (res.) 1	N/mm
Installation load (res.) 0	kN
Consider angular deviation Hanger length Consider friction friction coefficient 0 Add. support mass 0 kg	mm
Spring type Description Discription Discription]
OK Cancel Apply	Help

Settings design	×
Manufacturer Standard LISEGA V 2015	\sim
Design Standard	\sim
Number 1 2 	
Selection of the type	
● automatically ○ give type ○ user defined	
✓ ✓ show all types	
Installation load	
Calculation data	
Spring rate (res.) 1 N/mm	
Installation load (res.) 0 kN	
OK Cance	ł

6. Spring Support, Lisega

Lisega spring support:

Rohr2 menus:

Spring support

- Is working in vertical direction and provides options for lateral and axial restraints.
 - 1. Gap and friction may be entered
- "Internal support" option allows connection to other existing beam or pipe structures in analysis model
- Bending moments and torques are <u>not</u> restrained.
 1 BX BX and BZ free
 - 1. PX, PY and PZ= free
- Automatic design according to spring manufacturer design rules is default.
 - 1. Data from existing supports may be specified
- Friction is only considered in nonlinear analysis
- Mass of component may be input
- Design allows for:
 - 1. Selection of different brand of spring support
 - 2. User defined installation load
 - 3. User may select hanger type from catalogue

Node 15 X
Spring support
Segment 15 - 9 V Block Deactivate
external support
Coordinate system
spec. coordinate system Edit coordinate system
Spring design Consider with automatic design
Installation load (res.) 0 kN
Additional bearings
□ guide support □ axial stop □ WX □ WY ☑ WZ Stiffness of rigid bearings
Edit stiffness Default
Friction, gap Edit data
Edit data µ: 0.300
Add. support mass 0 kg
Spring type
Description
insert multiple
OK Cancel Apply Help
Settings design X
Settings design X
Manufacturer 🗹 Standard LISEGA 🛛 2015 🗸
Design Standard 🗸
Number
Selection of the type
\textcircled{O} automatically \bigcirc give type \bigcirc user defined
✓ ✓ show all types
Installation load
automatically give load no load
Calculation data
Spring rate (res.) N/mm
Installation load (res.) 0 kN
OK Cancel

7. Constant hanger, Lisega

Lisega constant hanger

Rohr2 menus:

Constant hanger

- Is working in vertical direction only providing a constant lifting force at any vertical movement
- "Internal hanger" option allows connection to other existing beam or pipe structures in analysis model
- Bending moments and torques are <u>not</u> restrained.
 1. PX, PY and PZ= free
- Automatic design according to hanger manufacturer design rules is default.
 - 1. Data from existing hangers may be specified
- Length must be entered if angular deviation is wanted.
 - 1. The maximum angulation of the hanger from the vertical shall be 4° (according to EN 13480)
- Friction is only considered in nonlinear analysis
- Mass of component may be input
- Design allows for:
 - 1. selection of different brand of hanger.
 - 2. User defined installation load
 - 3. User may select hanger type from catalogue

Node 15 X
Constant hanger
Segment 15 - 9 Block Deactivate © external hanger O internal hanger
Design Consider with automatic design
Design Installation load (res.) 0 kN
Consider angular deviation Hanger length mm
Add. support mass 0 kg
Hanger type
Description
OK Cancel Apply Help

Settings design X
Manufacturer Standard LISEGA V 2015 V
Design Standard 🗸
Number
Selection of the type
● automatically
✓ ✓ show all types
Installation load
automatically give load no load
Calculation data
Spring rate (res.) 0.001 N/mm
Installation load (res.) 0 kN
OK Cancel

8. Constant Support, Lisega

Lisega constant support:

Rohr2 menus:

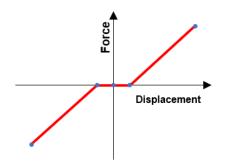
\$	
_	Constant support

- Is working in vertical direction and provides options for lateral and axial restraints.
 - 1. Gap and friction may be entered
- "Internal support" option allows connection to other existing beam or pipe structures in analysis model
- Bending moments and torques are <u>not</u> restrained.
 - 1. PX, PY and PZ= free
- Automatic design according to hanger manufacturer design rules is default.
 - 1. Data from existing hangers may be specified
- Friction is only considered in nonlinear analysis
- Mass of component may be input
- Design allows for:
 - 1. selection of different brand of hanger.
 - 2. User defined installation load
 - 3. User may select hanger type from catalogue

Node 15 ×			
Constant support			
Segment 15 - 9 V Block Deactivate			
external support O internal support			
Coordinate system			
spec. coordinate system Edit coordinate system			
Design Consider with automatic design			
Design Installation load (res.) 0 kN			
Additional bearings			
guide support axial stop WX WY WZ Stiffness of rigid bearings			
Edit stiffness Default			
Friction, gap			
Gap: vert.=0.0 mm μ: 0.300			
Add. support mass 0 kg			
Туре			
Description			
insert multiple			
OK Cancel Apply Help			
OK Caricei Appiy Heip			
Settings design X			
Manufacturer 🗹 Standard LISEGA 🗸 2015 🗸			
Design Standard ~			
Number			
Selection of the type			
automatically			
Show all types			
automatically			
Calculation data Spring rate (res.) 0.001 N/mm			
Installation load (res.) 0 kN			
OK Cancel			

9. Lisega Shock absorber

Rohr2 menus:



Shock absorber

 Component is active in dynamic analysis only. The shock absorber allows slow thermal movements within a specified range but restricts fast movements due to fast dynamic events.

1

- 1. Eigenfrequency analysis: Only the stiffnesses for both system and spring rate is considered
- 2. Linear dynamics: Same as for eigenfrequency analysis
- 3. Transient fully integrated analysis: all features are considered: gaps (backlash effect including impact), friction and viscous effect.

- Direction of action is specified by user.
- Carries load in both tension and compression.
- "Is connected to the system node", allows connection to other existing beam or pipe structures in model.
- Bending moments and torques are <u>not</u> restrained
 1. PX, PY and PZ= free
- The shock absorber has no mass

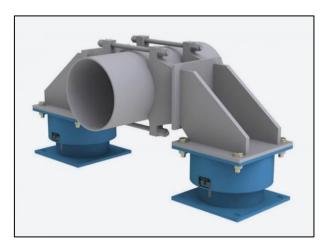
Node 69	Х
Shock absorber	
Base point O Is connected to the system: node	
Is considered as an anchor point, directional vector:	
X 0 mm Y 0 mm Z 400 mm	
Properties of auxiliary member	
Distance between shock absorber and 100 mm	
Shock absorber parameter	
My_data V	
Delete	
Gap negative 1 mm Gap positive 1 mm	
Constant resistance inside the gap 0.1 kN	
Spring rate of system 1000 N/mm	
Plastification load 10 kN	
Description	
insert multiple	
OK Cancel Apply Help	

Shock absorber parame	eter	×
Name of data	My_data	
Description	Sample data only	
Constant resistance (Visc velocity proportional resis		2 kN 0 kNs/m
Response behavior	 Velocity 	Acceleration
Reaction rate	0	mm/s
Spring rate (response	range) 100	00 kN/m
Impact coefficient	0.8	
ОК Са	ncel	

10. Lisega Damper

Rohr2 menus:

 Component is active in dynamic analysis only. The damper allows slow thermal movements but restricts fast movements due to fast dynamic events.


- 1. Eigenfrequency analysis: Only the stiffnes for spring rate is considered.
- 2. Linear dynamics: Same as for eigenfrequency analysis.
- 3. Transient fully integrated analysis: all features are considered: Stiffness and viscous effect.
- Spring rates and viscous damping may be specified for all six degrees of freedom (translations & rotations).
 - 1. User defined coordinate system is available.
 - 2. Connects to ground only.
- Carries load in both positive and negative direction.
- The mass of the damper may be given.

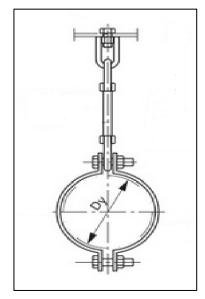
Comment:

The damper is a simpler component compared to the shock absorber from where most advanced features has been eliminated.

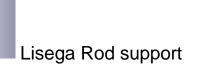
Vode 69							\times
Damper							
	Sec	ment	79 - 69		~		
_		- 1		- 1			
∐ spe	ec. (coordinate	e system	Edit	t coordina	ate system	
Spring	j raj	tes	_				
CWX	=	0	N/mm	CPX=	0	Nm/deg	
CWY	= [0	N/mm	CPY=	0	Nm/deg	
CWZ	= [500	N/mm	CPZ=	0	Nm/deg	
Veloci	ty p	roportion	al resistar	nce (Dire	ct integra	ation)	
RWX:	- [0	kNs/m	RPX=	0	kNms/rad	
RWY:	=	0	kNs/m	RPY=	0	kNms/rad	
RWZ	= [0	kNs/m	RPZ=	0	kNms/rad	
Add. s	upp	ortmass	13	kg			
Descrip	otior	۱ <u> </u>					
ins	erti	multiple					
OK	:	(Cancel	A	pply	Help	

11. Lisega Visco Damper

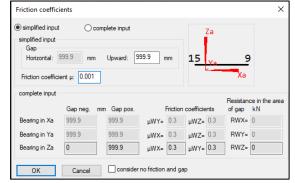
Rohr2 menus:


Visco damper

- Component is active in dynamic analysis only. The damper allows slow thermal movements but restricts fast movements due to fast dynamic events.
 - 1. Eigenfrequency analysis: Only the stiffness for spring rate is considered.
 - 2. Linear dynamics: Same as for eigenfrequency analysis but stiffness may be based on critical eigenfrequency value.
 - 3. Transient fully integrated analysis: all features are considered: Stiffness and viscous effects.
- Bending moments and torques are <u>not</u> restrained.
 1. PX, PY and PZ= free.
- Carries load in both positive and negative direction in horizontal and vertical directions simultaneously.
- The main advantage of the visco damper that there is no play/gap in the connection to the piping. This means that the visco damper also prevents small movements.
- Database of visco dampers is from the manufacturer Gerb
- The mass of the damper may be given.

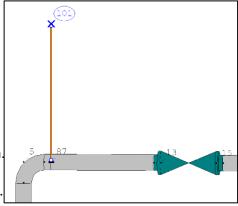

Node 41 X
Visco damper
Base point O Is connected to the system: node
Is considered as an anchor point, directional vector:
X 0 mm Y 0 mm Z -348.15 mm
Properties of auxiliary member
Distance between visco damper and 100 mm
Damper parameters
Parameter C B
Horz. lin 535.30 kN/m 17.442 kNs/m
Horz. lin 790.40 kN/m 6.858 kNs/m
Vert. line 1 484.80 kN/m 21.759 kNs/m 🗸
Frequencies for calculation of equivalent stiffness
horizontal 5 Hz vertical 5 Hz
For load cases of the type "harmonic excitation" use the excitation frequency for the determination of the equivalent stiffness
Mass stamp 4 kg
Mass case 7 kg
Type VES-2.5/V40/H40
Description
insert multiple
OK Cancel Apply Help

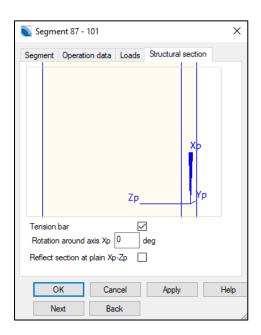
12. Lisega Rod support, SSG type 1, 2 & 3



Rohr2 menus:

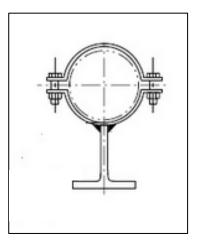
- The support may be modelled in multiple ways:
 - 1. Rigid support, sliding support. The most easy way to model a rod support in a static structural analysis.
 - Set coefficient of friction to m= 0.001




 Active in vertical direction only, all other translations and rotations are free (PX, PY and PZ= free).

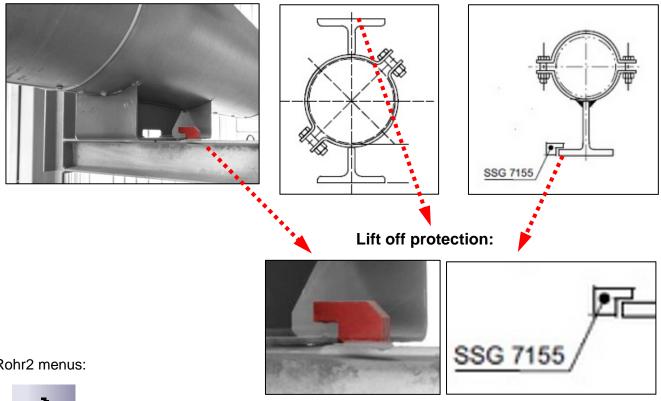
Node 15	×
Rigid support	
15 - 9 V Deactivate	
external support internal support	
Coordinate system Edit coordinate system	
Support type Sliding support Rotation stop Xi (Torsion) Guide Rotation stop Yi Axial stop Rotation stop Zi Anchor Lift off protection	
Components	
Friction, gap Gap: vert.=999.9 mmn Edit data μ: 0.300 Stiffness	
Edit stiffness Default	
Standard Save type in data base	
Add. support mass 0 kg	
Description	1
insert multiple Insert allowable loads	Ĩ
OK Cancel Apply Hel	p

Lisega Rod support and SSG type 1, 2 & 3, continued:


- 2. Using a rigid element with the option "Tension bar"
 - Require modelling of rigid element, applying anchor at free and setting option "Tension bar".
 - Angulation of rod is calculated.
 - Carry load in both tension and compression.
 - User must check for upward loads (warning is given at end of analysis).
 - All rotations are free (PX, PY and PZ= free)

13. Lisega Sliding shoe, SSG type 11

Rohr2 menus:



Lisega Sliding shoe, SSG type 11

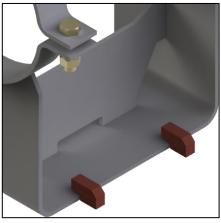
- Rigid support, sliding support.
 - Active in vertical direction only, all other translations and rotations are free (PX, PY and PZ= free).

Node 15	Х
Rigid support	
15 - 9 V Deactivate	
external support internal support	
Coordinate system Spec. coordinate system Edit coordinate system	
Support type Sliding support Rotation stop Xi (Torsion) Guide Rotation stop Yi Axial stop Rotation stop Zi Anchor Lift off protection	
Components	1
Friction, gap Edit data Gap: vert.=999.9 mmn µ: 0.300	
Edit stiffness Default	
Standard Save type in data base	
Add. support mass 0 kg	
Description	
insert multiple Insert allowable loads	
OK Cancel Apply Help	

14. Lisega Sliding shoe, SSG type 12 &13

Rohr2 menus:


Lisega Sliding shoe, SSG type 11 & 12


- Rigid support, sliding support.
 - 1. Active in vertical direction only, all other translations and rotations are free (PX, PY and PZ= free).
 - 2. Checking the option "Lift off protection" will restrain upward movement. Any gap in upward direction is specified at "Friction, gap" In figures below a gap of 2 mm is defined for upward movement of piping.
 - 3. Note that the "hook" and SSG 7155 vertical restraint can restrain lateral movement if the lateral movements are large.

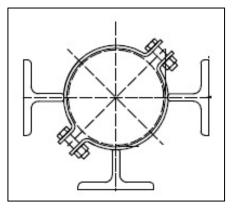
Support type		Friction coeffici	ients							×
 ✓ Sliding support Guide Axial stop Anchor 	Rotation stop Xi (Torsion) Rotation stop Yi Rotation stop Zi Vitf off protection	O simplified input simplified input Gap Horizontal:	• com	uplete input Upward: 0		nm	11_	Za Ya	1!	5
Components	₩Z □PX □PY □PZ	Friction coeffici	ent μ: 0.3						Xa	ce in the area
			Gap neg. mr	n Gappos.		Friction	n coefficie		of gap	
Friction, gap	Gap: vert.=0.0 mm n	Bearing in Xa	999.9	999.9	μWY=	0.3	μWZ=	0.3	RWX=	0
Edit data	Edit data	Bearing in Ya	999.9	999.9	μWX=	0.3	μWZ=	0.3	RWY=	0
	р. 0.000	Bearing in Za	0	2	μWX=	0.3	μWY=	0.3	RWZ=	0

Node 15					×
Rigid support					
15 - 9		\sim	Deactiv	ate	
0	al support	() in	ternal support	t	
Coordinate system	e system	Edit	coordinate s	ystem	
Support type Sliding support Guide Axial stop Anchor		otation otation		n)	
Components	wy 🖂 w	z 🗌 Pi	(PY]PZ	
Friction, gap Edit data Stiffness	Gap: μ: 0.3		99.9 mm n		
Edit stiffness	Defau	ilt			
Standard		Si	ave type in da	ita base	
Add. support mas	s 0		kg		
Description					
insert multiple		Inser	t allowable loa	ads	
ОК	Cancel		Apply	Help	

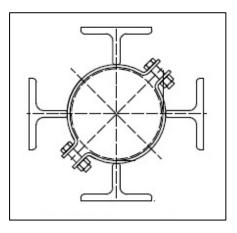
15. Lisega Sliding shoe w. guide, SSG type 14 & 15

Rohr2 menus:

Lisega Sliding shoe, SSG type 14 & 15


- Rigid support, sliding support + Guide.
 - Active in vertical and lateral direction only, axial translation and all rotations are free (PX, PY and PZ= free).
 - 2. Note the following:
 - a. For horizontal pipes both "Sliding support" and "Guide" must be checked
 - b. Checking the option "Lift off protection" will restrain upward movement

c. For vertical pipe runs only "Guide" must be checked

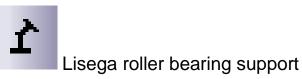

3. Friction and gap may be entered in all directions

Friction coeffici	ients							×
Simplified input simplified input Gap Horizontal:		uplete input Upward: 95	19.9 n	nm	11	Za Y	a 1!	5
Friction coeffici								ce in the area
	Gap neg.	mm Gap pos.		Friction	coefficie	nts	of gap	
Bearing in Xa	999.9	999.9	μWY=	0.3	µWZ=	0.3	RWX-	0
Bearing in Ya	1	1	μWX=	0.3	µWZ=	0.3	RWY=	0
Bearing in Za	0	999.9	μWX=	0.3	μWY-	0.3	RWZ=	0
ок	Cancel	consider r	no friction	and ga	ip			

SSG type 14

SSG type 15

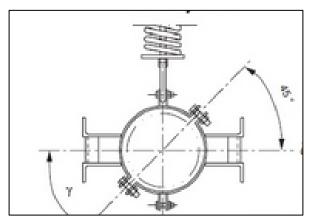
Node 15	×
Rigid support	
15 - 11 V Deactivate	
external support internal support	
Coordinate system 	
Support type Sliding support Rotation stop Xi (Torsion) Guide Rotation stop Yi Avial stop Rotation stop Zi Anchor Lift off protection	
Components	
Friction, gap Edit data Gap: horz.=0.0 mm vert.=999.9 mm µ: 0.300	
Stiffness Edit stiffness Default	1
Edit stiffness Default	
Standard Save type in data base	
Add. support mass 0 kg	
Description	
insert multiple Insert allowable loads	
OK Cancel Apply Help	


Copyright 2022, Skios Engineering AB. Revision 0, 2022-11-07

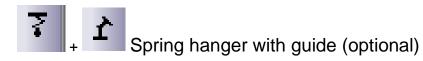
Page 16 (24)

16. Lisega roller bearing support

Rohr2 menus:


- Rigid support, sliding support
 - Active in vertical direction but can optionally have "Lift of protection" and lateral support (Guide) included. Axial translation and all rotations are free (PX, PY and PZ= free)
 - 2. Coefficient of friction must be set to almost zero:

Friction coeffici	ents						×
TIONZOTINA.	999.9 mm		99.9 mm	11_	Za Ya	1!	5
Friction coeffici	ent µ: 0.000	<u> </u>				Xu	
complete input	Gap neg.	mm Gap pos.	Frie	ction coefficie		Resistan of gap	ce in the area kN
Bearing in Xa	999.9	999.9	μWY= 0	.000 [°] µWZ=	0.000	RWX=	0
Bearing in Ya	999.9	999.9	μWX= 0	.000 [°] µWZ=	0.000	RWY=	0
Bearing in Za	0	999.9	μWX= 0	.000 [.] µWY=	0.000	RWZ=	0
ОК	Cancel	consider	no friction an	id gap			


3. Note: Minimum value of coefficient of friction in Rohr2 is μ = 1.0x10⁻⁶.

Node 15					×
Rigid support					
15 - 1	L	\sim	Deactive	ate	
externa	al support	() inter	rnal support	:	
Coordinate system	e system	Edit co	oordinate sy	/stem	
Support type Sliding suppor Guide Axial stop		otation sto otation sto otation sto ft off prot	op Zi	n)	
Components	wy 🖂 w	z 🗌 px	PY []PZ	
Friction, gap Edit data Stiffness	Gap: μ: 0.3	vert.=999 00	.9 mm n		
Edit stiffness	Defau	ılt			
Standard		Sav	e type in da	ta base	
Add. support mas	s O	kg			
Description Roll	er bearing	support			
insert multiple		Insert a	allowable loa	ads	
ОК	Cancel		Apply	Help	

17. Lateral support & spring, SSG type 17 & 18

Rohr2 menus:

In Rohr2 only one type of pipe support can be applied at a node. If multiple types of supports are needed at a single position, a new node point must be created close to an existing node having the different type of support.

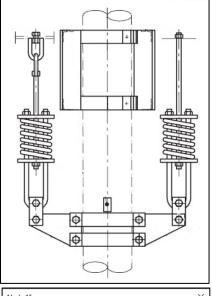
The pipe support in top right picture, SSG type 17 - 18 is modelled as follows:

- 1. Create a spring hanger.
- 2. Create an additional (rigid) support) close (1 mm) to the existing spring hanger.

Node 15 ×
Spring hanger
Segment 15 - 11 Block Deactivate external hanger internal hanger
Spring design Consider with automatic design Design Spring rate (res.) I N/mm
Installation load (res.) 0 kN
Consider angular deviation Hanger length mm Consider friction friction coefficient 0 Add. support mass 0 kg Spring type Description Insert multiple
OK Cancel Apply Help
Node 83 ×
Rigid support
B3 - 17 V Deactivate
external support
Coordinate system Edit coordinate system
Support type Sliding support Guide Axial stop Axial stop Axial stop Components
WX WY WZ PX PY PZ
Friction, gap Edit data Gap: horz.=0.0 mm 1 µ: 0.300
Stiffness Default
Standard Save type in data base
Add. support mass 0 kg
Description
insert multiple Insert allowable loads

18. Lisega spring support vert. pipe, SSG type 27 - 30

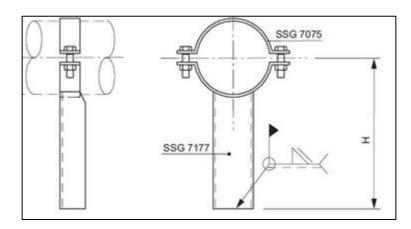
Rohr2 menus:


Spring hanger with guide (optional)

In Rohr2 only one type of pipe support can be applied at a node. If multiple types of supports are needed at a single position, a new node point must be created close to an existing node having the different type of support.

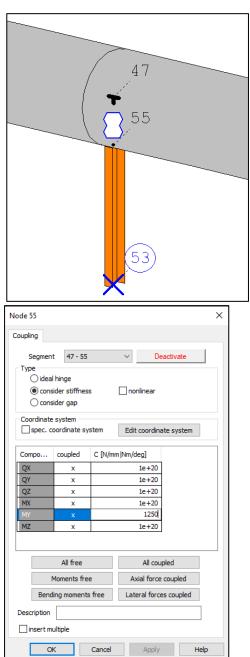
The pipe support in top right picture, SSG type 27 - 30 is modelled as follows:

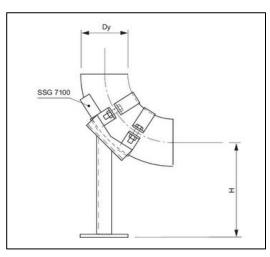
- 1. Create a spring hanger using two hangers
- 2. Create an additional (rigid) support) right above the existing spring hanger


Node 83	×
Rigid support	
83 - 17 V Deactivate	
external support O internal support	
Coordinate system Spec. coordinate system Edit coordinate system	
Support type Sliding support Rotation stop XI (Torsion) Guide Rotation stop XI Axial stop Rotation stop ZI Anchor Lift off protection	
Components	
WX WY WZ PX PY PZ	
Edit data Gap: horz.=0.0 mm1 µ: 0.300	
Stiffness	
Edit stiffness Default	
Standard Save type in data base	
Add. support mass 0 kg	
Description	
insert multiple Insert allowable loads	
	-

Node 15 ×
Spring hanger
Segment 15 - 11
Spring design
Consider with automatic design
Design Spring rate (res.) 1 N/mm
Installation load (res.) 0 kN
Consider angular deviation Hanger length mm
Consider friction friction coefficient 0
Add. support mass 0 kg
Spring type
Description
insert multiple
OK Cancel Apply Help

Settings design	×
Manufacturer Standard LISEGA V 2015	\sim
Design Standard Number 102	\sim
Selection of the type ⓐ automatically	
Installation load automatically give load no load	
Calculation data Spring rate (res.) 1 N/mm Installation load (res.) 0 kN	
OK Cancel	

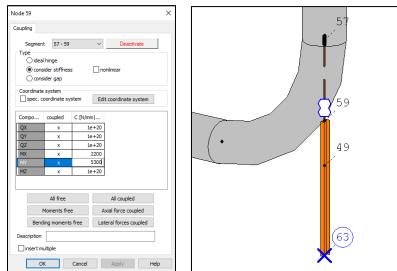

19. Pipe – beam connection, SSG type 31

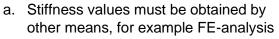

This pipe support is built as a structural beam connecting to the pipe:

Consider the following using this support:

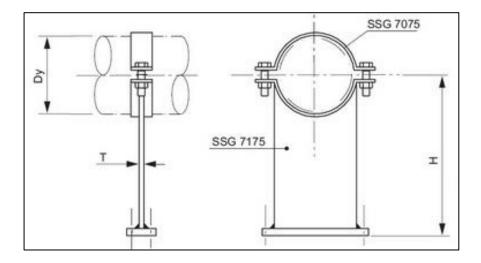
- This support is not intended for large axial forces or displacements. Sliding between pipe clamp is not desired.
- The angulation of pipe must be small. Angle between beam pipe should be 90°.
- Create a rigid element within the pipe (between node 47 and node 55 in figure) to get correct stiffness of the beam-pipe connection. Otherwise the support will be too flexible.
- Additional flexibility between pipe and beam may be defined using "Coupling"
 - a. Stiffness values must be obtained by other means, for example FE-analysis

20. Trunnion support, SSG type 32

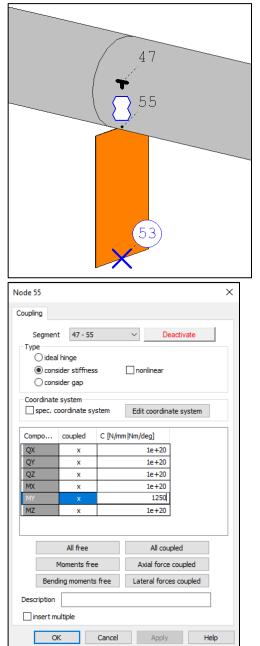


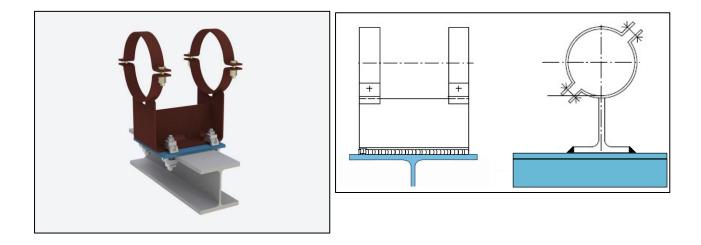

This pipe support is built as a structural beam connecting to the pipe bend:

Consider the following using this support:

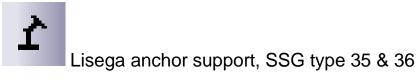

- This support is not intended for large horizontal forces or displacements. Sliding between pipe clamp is not allowed.
- The angulation of pipe must be small.
- Create a rigid element within the bend (between node 57 and node 59 in figure) to get correct stiffness of the beam-pipe connection. Otherwise the support will be too flexible.
- Additional flexibility between pipe and beam may be defined using "Coupling"
- · 59 49 63

57


21. Axial flex plate support, SSG type 33 & 34


This pipe support is built as a structural beam connecting to the pipe:

Consider the following using this support:


- This support is flexible in axial direction and is stiff in lateral and vertical directions.
- Create a rigid element within the bend (between node 47 and node 55 in figure) to get correct stiffness of the beam-pipe connection. Otherwise the support will be too flexible
- Additional flexibility between pipe and beam may be defined using "Coupling"
 - a. Stiffness values must be obtained by other means, for example FE-analysis

22. Lisega anchor support, SSG type 35 & 36

Rohr2 menus:

Rigid support, Anchor

- 1. All translations and rotations are restrained
- 2. Stiffness values may be specified for all degrees of freedom
- 3. It is not possible to specify any gaps for any direction or rotation

Node 45	\times				
Rigid support					
45 - 47 V Deactivate					
external support Ointernal support					
Coordinate system Spec. coordinate system Edit coordinate system					
Support type Support type Suding support Rotation stop Xi (Torsion) Guide Axial stop Rotation stop Zi Axial stop Ut off protection					
Components					
Friction, gap Edit data No gap considered No friction considered					
Stiffness Edit stiffness Default	1				
Edit stiffness Delauit					
Standard Save type in data base					
Add. support mass 0 kg					
Description					
insert multiple Insert allowable loads					
OK Cancel Apply Help					

"safe side". See also:

Note that the stiffness values are based on pipe

The pipe supports are divided in three categories,

The secondary steel must be taken into account

when choosing the categories of the pipe supports.

VDI3842, VDI-RICHTLINIEN, Schwingungen in Rohrleitungssystemen / Vibrations in piping systems, Beuth Verlag GmbH, 107 72 Berlin, 2004

Selecting the proper stiffness category requires that the analyst has knowledge about the structures supporting the piping system which is unique for every installation. At the end choosing "Default" value for static structural analysis may be sufficient and a little on the

Anchor point (virtually infinite stiff):

to real life support structures.

outer diameters.

soft, normal and hard.

Stiffness			×		
Default Ouse from data base	er defined		~		
for outer diameter 1 Spring rates	00 mm X	insert o	outer diameter Z		
Displacement [N/mm]	1e+20	1e+20	1e+20		
Rotation [Nm/deg]	1e+20	1e+20	1e+20		
OK Cancel					

Sliding support:

Stiffness			×		
Default Ous from data base	er defined		~		
for outer diameter Spring rates	100 mm	n insert o	outer diameter Z		
Displacement [N/mm]	40000	40000	40000		
Rotation [Nm/deg]	0	0	0		
OK Cancel					

Stiffness

Stiffness values for supports 23.

Within Rohr2, most supports are modelled using node to node contact elements, often called as "gap" elements. For supports where the pipe component may slide on the support or change status from contact to non-contact and vice verse, the equation solver must use an iterative procedure to find a solution. Since a contact problem is a "status" type of non linearity it is sensitive to a numerical difficulty called "chattering".

Chattering means that the pipe at one iteration is penetrating into the support. In response to this a spring is introduced to push the pipe up to the correct position of the support at the next iteration. If this spring is "to stiff" it might push the pipe away from the support and hence the spring is removed. And this penetration and lift-off will continue until the of allowable number of equilibrium iterations are exhausted and a warning is issued that the accuracy of the solution is not achieved.

For this reason Rohr2 selects a contact stiffness based on material type and pipe dimension at current support to provide better conditions for the equation solver of finding a solution.

In real life the piping supports are not infinite stiff, since they are designed by sheet metal strips with various shapes and dimensions and the support is suspended by secondary steel which also adds additional flexibility. For this reason, Rohr2 provides data bases according

to VDI 3842 year 2003 and 2004 release to provide day Stiffness × O Default O user defined VDI 3842/2003 - hart Irom data base for outer diameter diameter VDI 3842/2003 - normal Spring rates VDI 3842/2003 - weich 7 VDI 3842/2004 - hard Displacement [N/mn VDI 3842/2004 - normal 2.52 VDI 3842/2004 - soft Rotation [Nm/deg] OK Cancel